\[
\begin{aligned}
VT &= I_{sat} L \\[8pt]
DC &= \frac{V_{out}}{V_{in} N} \\[8pt]
f_{min} &= \frac{DC}{T_{ON_{max}}} \\[8pt]
E_{cycle} &= \frac{I_{sat}^2 L}{2} \\[8pt]
P_{max} &= E_{cycle} f = \frac{I_{sat}^2 L f}{2} \\[8pt]
I_{out1} &= \frac{P_{max}}{V_{out1}}
\end{aligned}
\]
Where:
\[
\begin{array}{r l}
VT & = \text{volt-time product} \\[4pt]
DC & = \text{duty cycle} \\[4pt]
f_{min} & = \text{minimum frequency} \\[4pt]
E_{cycle}& = \text{energy per cycle} \\[4pt]
P_{max} & = \text{maximum power} \\[4pt]
I_{out} & = \text{output current} \\[4pt]
L & = \text{transformer primary inductance} \\[4pt]
I_{sat} & = \text{saturation current} \\[4pt]
T_{ON_{max}} & = \text{wave high time} \\[4pt]
V_{out} & = \text{output voltage}
\end{array}
\]