Formula: $$ F_{\text{total}} = F_1 + \frac{F_2 - 1}{G_1}
+ \frac{F_3 - 1}{G_1 G_2} +
\cdots + \frac{F_n - 1}{G_1 G_2 \cdots G_{n-1}} $$
$$ NF_{\text{total}} \, (\text{dB}) = 10 \log_{10}(F_{\text{total}})
$$
Where \( F_i \) is the noise factor (linear) and \( G_i \) is the gain
(linear) for each stage.
Formula: $$ NF \, (\text{dB}) = 10 \log_{10}(F) $$
$$ F = 10^{NF / 10} $$
Formula: $$ NF \, (\text{dB}) = 10 \log_{10} \left(
\frac{\text{SNR}_{\text{in}}}{\text{SNR}_{\text{out}}} \right) $$
$$ \text{SNR}_{\text{out}} = \frac{\text{SNR}_{\text{in}}}{10^{NF / 10}}
$$
$$ \text{SNR}_{\text{in}} = \text{SNR}_{\text{out}} \times 10^{NF / 10}
$$
Formula: $$ NF \, (\text{dB}) = \text{SNR}_{\text{in}}
\, (\text{dB}) -
\text{SNR}_{\text{out}} \, (\text{dB}) $$
$$ \text{SNR}_{\text{out}} \, (\text{dB}) = \text{SNR}_{\text{in}} \,
(\text{dB}) - NF \,
(\text{dB}) $$
$$ \text{SNR}_{\text{in}} \, (\text{dB}) = \text{SNR}_{\text{out}} \,
(\text{dB}) + NF \,
(\text{dB}) $$
© Designed & Developed by Eleczia